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Abstract

Extraintestinal pathogenic Escherichia coli (ExPEC) strains are important pathogens that

cause diverse diseases in humans and poultry. Some E. coli isolates from chicken feces

contain ExPEC-associated virulence genes, so appear potentially pathogenic; they conceiv-

ably could be transmitted to humans through handling and/or consumption of contaminated

meat. However, the actual extraintestinal virulence potential of chicken-source fecal E. coli

is poorly understood. Here, we assessed whether fecal E. coli isolates from healthy produc-

tion chickens could cause diseases in a chicken model of avian colibacillosis and three

rodent models of ExPEC-associated human infections. From 304 E. coli isolates from

chicken fecal samples, 175 E. coli isolates were screened by PCR for virulence genes asso-

ciated with human-source ExPEC or avian pathogenic E. coli (APEC), an ExPEC subset

that causes extraintestinal infections in poultry. Selected isolates genetically identified as

ExPEC and non-ExPEC isolates were assessed in vitro for virulence-associated pheno-

types, and in vivo for disease-causing ability in animal models of colibacillosis, sepsis, men-

ingitis, and urinary tract infection. Among the study isolates, 13% (40/304) were identified as

ExPEC; the majority of these were classified as APEC and uropathogenic E. coli, but none

as neonatal meningitis E. coli. Multiple chicken-source fecal ExPEC isolates resembled

avian and human clinical ExPEC isolates in causing one or more ExPEC-associated ill-

nesses in experimental animal infection models. Additionally, some isolates that were clas-

sified as non-ExPEC were able to cause ExPEC-associated illnesses in animal models, and

thus future studies are needed to elucidate their mechanisms of virulence. These findings

show that E. coli isolates from chicken feces contain ExPEC-associated genes, exhibit

ExPEC-associated in vitro phenotypes, and can cause ExPEC-associated infections in ani-

mal models, and thus may pose a health threat to poultry and consumers.
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Introduction

The primary and secondary habitats of Escherichia coli are the intestinal tract of warm-blooded

animals and the environment, respectively. In poultry, as in humans, E. coli resides in the

lower digestive tract, which it colonizes in the first 24 h after hatching [1] or birth [2].

Although many E. coli strains are harmless commensals, a subset have acquired the ability to

cause intestinal or extraintestinal diseases. Extraintestinal pathogenic E. coli (ExPEC) strains

cause diverse infections outside of the intestinal tract in humans and animals [3–5]. Based on

the host and the site of infection, different ExPEC strains are subclassified as neonatal menin-

gitis E. coli (NMEC), sepsis-associated E. coli (SEPEC), uropathogenic E. coli (UPEC), which

cause newborn meningitis, sepsis, and urinary tract infections (UTI), respectively; and avian

pathogenic E. coli (APEC), which mainly causes respiratory and systemic disease in poultry.

ExPEC infections are important to human health and are a major cause of economic loss to

the poultry industry. In the United States, the costs associated with ExPEC infections in

humans and poultry exceeds $4 billion per year [3, 6]. ExPEC strains can colonize the intestine,

similar to non-pathogenic commensal E. coli [3, 6], but are equipped with virulence factors

that allow them to cause disease in extraintestinal sites. In addition to the intestine, poultry

houses serve as a reservoir for APEC [7], and this environment allows strains to persist for

many months over successive flocks [8].

Epidemiological studies have documented the presence of ExPEC, as defined by molecular

criteria, in the intestine of healthy poultry and in poultry meat, with some strains being geneti-

cally similar to those responsible for human infections [7, 9, 10]. Based on epidemiological

analysis and molecular typing, it is suspected that food-producing animals are a source of bac-

teria capable of causing human ExPEC infections [11]. However, the frequency with which

humans acquire ExPEC through consumption or handling of ExPEC-contaminated foods,

become colonized intestinally, and subsequently develop infection at extraintestinal sites, is

undefined [12].

Chicken-to-chicken ExPEC transmission, through pecking or inhalation of contaminated

fecal dust could result in carcass condemnation and severe disease or death of poultry [3, 8]. In

addition, ExPEC transmission among chickens may increase the presence of ExPEC colonized

chickens, and thus increase the frequency of ExPEC transmission onto poultry products. Fecal

contamination of poultry carcasses at slaughter, including from rupture of the digestive system

during processing, is likely a major source of meat contamination with ExPEC [7, 10, 13].

Such organisms could be transmitted to humans through consumption of contaminated meat,

cross-contamination of non-meat items during food preparation, hand-mouth contamination

by the food preparer, or direct human-animal contact [11].

Improved understandings of the risk of chicken-source fecal E. coli are needed to guide the

development of preventative measures to reduce infection in poultry and subsequent food

contamination. Accordingly, this study’s objectives were (i) to characterize E. coli isolates from

chicken fecal samples both genetically and phenotypically for virulence-associated traits and

(ii) to determine the virulence of selected isolates in animal models of chicken colibacillosis

and human ExPEC diseases (sepsis, meningitis, and UTI).

Materials and methods

Human and animal ethics statement

With approval from the Arizona State University (ASU) Institutional Review Board

(#1012005820) and the subjects’ written informed consent, voided urine was collected from 2

male and 2 female healthy adult human volunteers. Animal infection experiments were
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performed in dedicated animal facilities in accordance with protocols approved by the ASU or

Iowa State University (ISU) Institutional Animal Care and Use Committee (ASU Protocol

number 1168R and ISU Protocol number 1-16-8159G). Appropriate procedures were used to

reduce potential pain, distress, and discomfort. Animals were acclimated for 7 days before

each experiment and received enrichment devices. Animals were housed in groups in order to

promote social behavior. Humane endpoint criteria were set for all animals such that any mor-

ibund animal, animals exhibiting immobility (unable to feed or drink) or failure to groom

(rodents only) were euthanized immediately according to the recommendations of the Ameri-

can Veterinary Medical Association 2013 Guidelines, and all remaining animals were eutha-

nized at specific time points post-inoculation as described below. Animals exhibiting signs of

illness but not meeting endpoint were not treated to maintain critical experimental data (e.g.,

bacterial loads), instead specific early endpoints were used as described below to minimize

suffering.

Bacterial strains and growth media

Bacterial strains were routinely grown at 37˚C in Luria Bertani (LB) broth, on LB agar, or on

MacConkey agar unless stated otherwise. Freezer stocks were maintained at -80˚C in peptone-

glycerol medium. Positive control E. coli strains for the following disease models included uro-

sepsis isolate CFT073 [14] for sepsis and UTI, cystitis isolate UTI89 [15] for UTI, neonatal

meningitis isolate RS218 [16] for meningitis, and avian-source χ7122 [17] and APEC-O2 [18]

for avian colibacillosis. Negative control strains included E. coli K-12 MG1655 for sepsis, UTI,

and colibacillosis, and laboratory E. coli strain DH5α for meningitis. For colicin production, E.

coli K-12 χ6092 was used as a sensitive indicator [19].

Three-hundred and four fecal E. coli isolates were obtained from conventionally-raised

commercial chickens. For this, fresh fecal samples from the pen floor were collected from 7 dif-

ferent broiler chicken farms in Quebec, Canada. Each farm housed 20,000 to 30,000 chickens

aged from 35 to 50 days at the time of sampling From each farm, 5–15 pooled fecal samples

were suspended 1/10 (weight/volume) in buffered peptone water and enriched overnight at

37˚C. Boiled DNA extracts from these cultures were tested by PCR [20] for the presence of the

virulence genes tsh, papC, iucD, and cnf, which are associated with E. coli causing extraintest-

inal infections in one or more production animal species or humans [21–25], thereby permit-

ting a rapid and inexpensive initial screen for a wide spectrum of possible ExPEC strains.

For screen-positive samples, enriched broths were streaked onto MacConkey agar. Three to

10 lactose-positive (i.e., presumptive E. coli) colonies were picked randomly per MacConkey

agar plate and tested individually by PCR for tsh, papC, and iucD (no broth samples were posi-

tive for cnf). All isolates positive for any of these virulence genes were confirmed as E. coli by

PCR detection of the E. coli-specific housekeeping gene uidA and underwent a more extensive

virulence gene screen, as described below.

Genotypic and phylogenetic screening

The 175 E. coli isolates identified by this initial screen as containing� 1 of tsh, papC, and iucD
were further screened by multiplex PCR for ExPEC status, based on detection of� 2 of the fol-

lowing 5 ExPEC-defining traits: papA and/or papC (P fimbriae: counted as 1), sfa/foc (S and

F1C fimbriae), afa/dra (Dr-binding adhesins), kpsM II (group 2 capsule), and iutA (aerobactin

system) [26]. All isolates qualifying as ExPEC (n = 40), and a similar number of randomly

selected non-ExPEC isolates (n = 37) from the remaining 135 E. coli isolates that did not qual-

ify as ExPEC, underwent further analysis for major E. coli phylogenetic groups (A, B1, B2, and
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D) by triplex PCR [27] and were screened by multiplex PCR for 50 ExPEC-associated virulence

genes (Table 1) [21, 28, 29].

In vitro phenotypic screening

Study isolates underwent phenotypic screening for siderophore and colicin production, bio-

film formation, complement resistance, growth in human urine, swimming motility, and cell

association ability. Siderophore production was analyzed using Chrome azurol S agar as

described previously [30]. A positive result consisted of bacterial colonies displaying orange

haloes on blue agar after overnight incubation at 37˚C; halo diameters were recorded. Total

colicin production was tested using the double-agar diffusion method [31] on trypticase soy

agar. E. coli K-12 χ6092 was used as a sensitive indicator for colicin production.

Table 1. Prevalence of extraintestinal pathogenic Escherichia coli (ExPEC)-associated genes among chicken fecal E. coli isolates.

Functional category Gene No. of isolates positivea (%) P-valueb

ExPEC (n = 40) Non-ExPEC (n = 37)

Adhesin F10 1 (3) 0 (0) 1.00

F14 7 (18) 0 (0) 0.01

fimH 36 (90) 36 (97) 0.36

hra 15 (38) 9 (24) 0.23

iha 1 (3) 1 (3) 1.00

papA 11 (28) 0 (0) < 0.001

papC 14 (35) 0 (0) < 0.001

papEF 14 (35) 1 (3) < 0.001

papG2 38 (95) 1 (3) < 0.001

papG3 39 (98) 0 (0) < 0.001

sfa 0 (0) 1 (3) 0.48

Protectin cvaC 17 (43) 24 (65) 0.07

iss 30 (75) 29 (78) 0.79

kpsMT3 4 (10) 5 (14) 0.73

kpsMT K1 2 (5) 0 (0) 0.49

kpsM II 37 (93) 1 (3) < 0.001

rfc 0 (0) 1 (3) 0.48

traT 0 (0) 1 (3) 0.48

Siderophore fyuA 7 (18) 7 (19) 1.00

ireA 8 (20) 11 (30) 0.43

iroN 19 (48) 27 (73) 0.04

iutA 40 (100) 35 (95) 0.23

Toxin astA 13 (33) 11 (29) 0.81

hlyF 36 (90) 37 (100) 0.12

pic 2 (5) 1 (3) 1.00

tsh 21 (53) 36 (97) < 0.001

Miscellaneous ibeA 1 (3) 0 (0) 1.00

malX 3 (8) 0 (0) 0.24

ompT 13 (33) 14 (38) 0.64

usp 17 (43) 25 (68) 0.04

aAll isolates were negative for the following adhesins (afa/draBC, afaE, bmaE, clpG, focG, F11, F12, F16, F17, gafD, papG1, sfaS), protectins (kpsMT K2,

kpsMT K15, kfiC K5), toxins (cdt, cnf1, hlyA, saT), and fliC H7 gene.
bP-values determined by Fisher’s exact test, two-tailed.

https://doi.org/10.1371/journal.pone.0180599.t001
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Biofilms were quantified in 96-well microtiter plates (Microtest™ U-Bottom, Becton Dick-

enson, Franklin Lakes, NJ) as described previously [32]. Bacterial strains were grown overnight

to an optical density (OD) at 600 nm of 1.0, diluted 1:100 in PBS, and 200 μl of the culture was

added to 96-well plates in quadruplicate. After overnight incubation at 37˚C, plates were

stained with crystal violet. Individual experiments were performed at least three times. A crys-

tal violet-stained biofilm with an OD600 at least 3-fold greater than the negative control well

containing only growth medium was considered a positive result.

Resistance to guinea pig serum complement was determined using a standard quantitative

microtiter plate method [33]. Briefly, 104 CFU of bacteria in 100 μl of PBS was mixed with an

equal volume of 50% serum. After 4 h at 37˚C, the OD492 was determined spectrophotometrically.

Isolates were considered complement-resistant if the OD492 in serum-containing wells equaled

or exceeded that of the no-serum control well. Heat-inactivated sera was used as a control.

Growth in human urine was assessed as described previously [32]. Urine was filter steril-

ized, pooled, and frozen in aliquots. Diluted bacterial suspensions in urine were prepared by

adding to urine a 1:100 volume of an overnight LB culture after it had been adjusted to an

OD600 of 1.0. The turbidity of the bacterial suspensions was measured using a wideband filter

(420–580 nm) every 15 min for 8 h at 37˚C. E. coli K-12 strain χ6092 was used as a negative

control and UPEC strain CFT073 as a positive control.

For swimming motility assays, a toothpick was used to stab-inoculate overnight LB cultures

adjusted to an OD600 of 1.0 onto 0.25% agar plates containing 0.7% sodium chloride and 1.3%

tryptone. Plates were incubated for 8 h at 37˚C.

T24 human bladder carcinoma (ATCC HTB-4) and A498 human renal carcinoma (ATCC

HTB-44) cell lines were obtained from American Type Culture Collection (ATCC) and main-

tained in growth media as specified by ATCC. For inoculation onto cell monolayers, bacterial

cultures were prepared from an LB overnight culture, diluted 1:100 in freshly pooled (4 indi-

vidual samples) filter-sterilized human urine, and then incubated statically for 24 h at 37˚C.

Approximately 105 CFU of bacteria were inoculated onto cells at a multiplicity of infection of

10. For bacterial association assays, the inoculated cells were incubated at 37˚C in 5% CO2 for

1 h, then rinsed three times with PBS. Cells were lysed with 0.1% deoxycholic acid sodium salt

for enumeration of viable colonies by serial dilution plating on MacConkey agar. For persis-

tence assays, after the cells had been incubated with bacteria for 1 h and rinsed with PBS,

medium containing 100 μg/ml gentamicin (Sigma-Aldrich) was added and cells were incu-

bated at 37˚C for an additional 1 or 3 h. Cells were then washed three times with PBS and

lysed for serial dilution plating. Association was calculated as the ratio of the number of cell-

associated bacteria at 1 h to the initial inoculum size, and persistence as the ratio of the number

of intracellular bacteria at 3 h vs. 1 h.

Virulence in chickens

Female white leghorn chickens (VALO BioMedia, Adel, IA) were raised on the floor in pens

containing deep wood shavings to mimic cage-free conditions, and separate rooms were used

for each bacterial challenge strain. Animals were maintained on a Purina1 non-medicated

feed containing prebiotics and probiotics throughout the study. During the acclimation period

prior to infection, 2 animals found with pecking wounds had died. At 5 weeks of age, chickens

were inoculated with 107 CFU via the air sac from an overnight LB culture suspended in PBS

[17]. All experimental and control groups contained at least 7 animals. Chickens were moni-

tored twice daily for 2 days and euthanized at 48 h post-infection by carbon dioxide inhalation.

No chickens died following infection prior to the experimental endpoint. At 2 days post-chal-

lenge blood, heart, liver, lung, spleen, and an air sac swab were collected for detection and
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quantification of E. coli using MacConkey agar. Gross colibacillosis lesions in the air sac, heart,

and liver were scored using an established scoring scheme [17].

Virulence in mammals

Rodent models of human ExPEC infections, including sepsis, meningitis, and UTI, were used

to evaluate the isolates’ virulence potential for humans. Seven-week-old female BALB/c mice

(Charles River Laboratories, Wilmington, MA) were injected intraperitoneally with approxi-

mately 108 CFU of a log-phase LB culture suspended in PBS. All experimental and control

groups contained 5 mice. Mice were observed daily over 7 days and scored for illness severity

using an established scoring scheme [34] as follows: 1, healthy; 2, minimally ill; 3, moderately

ill; 4, severely ill; 5, dead. All animals meeting endpoint criteria were euthanized by carbon

dioxide inhalation, death was not considered an endpoint criterion. However, some animals

died following infection prior to the experimental endpoint due to sepsis. On day 7, surviving

mice were euthanized by carbon dioxide inhalation.

The ability of chicken fecal isolates to enter the central nervous system was tested in an

established rat model of E. coli meningitis [35]. Briefly, outbred pregnant Sprague-Dawley rats

(Charles River Laboratories) with timed conception were used to give birth to neonatal rats.

Five-day-old Sprague-Dawley rats were divided randomly into groups of 10 to 12 rats and

received approximately 102 CFU intraperitoneally. No infected rats died prior to the experi-

mental endpoint. At 18 h post-inoculation, rats were euthanized by carbon dioxide inhalation

followed by cervical dislocation, and blood and cerebrospinal fluid specimens were collected,

serially diluted, and plated on MacConkey agar.

The ability of bacteria to cause UTI was tested in mice, as described previously [36]. Seven

to eight-week-old female CBA/J mice (Jackson Laboratories, Bar Harbor, ME) were inoculated

via a urethral catheter with approximately 108 CFU of bacteria. Mice were catheterized follow-

ing anesthesia with an intraperitoneal injection of a ketamine—xylazine—acepromazine cock-

tail. Three isolates that grew in human urine (MM242, MM243, and MM244) and two that

failed to grow (MM248 and MM259) were selected as experimental isolates. All experimental

and control groups contained at least 9 mice. Mice were monitored twice daily for 2 days. No

animals died following infection but prior to the experimental endpoint. Mice were euthanized

48 h post-infection by carbon dioxide inhalation and CFU/g of bladder, kidney, liver, and

spleen were determined by serial dilution plating of organ homogenates on MacConkey agar.

Statistical analysis

Fisher’s exact test (two-tailed) was used to compare ExPEC and non-ExPEC isolates for the

prevalence of ExPEC virulence genes and virulence-associated phenotypes, and experimental

and control strains for the proportion of tissues positive for E. coli in the chicken colibacillosis

model. A t-test was used to compare ExPEC and non-ExPEC isolates for colicin and sidero-

phore production. An ANOVA followed by Dunnett’s method for multiple means comparison

was used to compare experimental and control strains in cell association and persistence

assays, and in the colibacillosis, meningitis, and UTI models. The Log-rank (Mantel-Cox) test

was used to compare survival curves from the sepsis model. Analyses were performed using

Graphpad Prism 6.0. P values< 0.05 were considered significant.

Results

Prevalence of ExPEC virulence genes

Fecal E. coli isolates (n = 304) from healthy chickens were prescreened for 4 genes (tsh, papC,

iucD, and cnf) and 175 tested positive for one or more of these genes. Among the 175 isolates,

Virulence of chicken fecal E. coli isolates

PLOS ONE | https://doi.org/10.1371/journal.pone.0180599 July 3, 2017 6 / 18

https://doi.org/10.1371/journal.pone.0180599


40 qualified as ExPEC using a PCR-based ExPEC screening method [37]. Extended virulence

genotyping of the 40 ExPEC and 37 randomly selected non-ExPEC isolates identified 26 of the

50 genes investigated in at least one isolate each (Table 1 and S1 Table).

Phylogenetic groups and subpathotypes

Prevalence of phylogroups differed for isolates classified as ExPEC vs. non-ExPEC for group A

(63% vs. 8%, respectively: P< 0.001), B1 (0% vs. 78%: P< 0.001), and D (33% vs. 11%:

P = 0.03), but not group B2 (5% vs. 3%: P = 1.0).

ExPEC isolates were classified into subpathotypes based on previously described criteria

[32] (Table 2). Of the 40 ExPEC isolates, 32 (80%) qualified for one or more of the defined sub-

pathotypes, including 24 (60%) as APEC (18% APEC only) and 15 (38%) as UPEC (18%

UPEC only). In contrast, none qualified as NMEC, and 8 (20%) fit none of the defined patho-

types. Of the 32 APEC and UPEC isolates, 15 (47%) qualified additionally as SEPEC.

In vitro virulence-associated phenotypes

PCR-confirmed ExPEC isolates and randomly selected non-ExPEC isolates were compared

for virulence-associated phenotypes. For this, siderophore and colicin production, biofilm for-

mation, complement resistance, and growth in human urine were assessed by standard assays

(S2 Table). The results are summarized in Table 3.

Selected isolates—chosen based on differing ExPEC status, genotype, phylogroup, and in
vitro phenotypes—were additionally characterized for swimming motility, ability to associate

with and persist within human A498 and T24 cells, and virulence in animal models of ExPEC-

associated infections. These isolates were selected based on applicability to the animal chal-

lenge models. Thus, all APEC and two APEC/UPEC isolates were tested in chickens, two of

three complement-resistant isolates were selected for the sepsis model, and APEC/UPEC iso-

lates were selected for the UTI model. Since, no fecal E. coli isolates were classified as NMEC,

isolates containing virulence factors (K1 capsule or ibeA) associated with NMEC were selected.

In addition, non-ExPEC isolates were selected to determine if isolates not classified as ExPEC

based on molecular typing could still cause ExPEC-associated diseases. Table 4 summarizes

Table 2. Criteria and prevalence of extraintestinal pathogenic Escherichia coli (ExPEC) subpathotypes.

Subpathotypea Selection-based criteria No. (%)c

Phenotype Genotypeb

APEC None ExPEC and� 4 of 5 selected APEC genes 7 (18)

NMEC None ExPEC plus kpsMT K1 and ibeA 0 (0)

UPEC Growth in urine ExPEC 7 (18)

Undefined None ExPEC 4 (10)

APEC/SEPEC Complement resistant ExPEC and� 4 of 5 selected APEC genes 10 (25)

APEC/UPEC Growth in urine ExPEC and� 4 of 5 selected APEC genes 3 (8)

APEC/UPEC/SEPEC Growth in urine and complement resistant ExPEC and� 4 of 5 selected APEC genes 4 (10)

UPEC/SEPEC Growth in urine and complement resistant ExPEC 1 (3)

Undefined/SEPEC Complement resistant ExPEC 4 (10)

aAPEC, avian pathogenic E. coli; NMEC, neonatal meningitis E. coli; SEPEC, sepsis-associated E. coli; Undefined, classified as ExPEC but does not

correspond with any of the three major subpathotypes (APEC, NMEC, or UPEC); UPEC, uropathogenic E. coli.
bExPEC defined by� 2 of the following genes: papA and/or papC (counted as 1), sfa/foc, afa/dra, kpsM II, and iutA. For APEC, genes included: (1) kpsM II;

(2) iss; (3) tsh; (4) one of the 5 genes: sfa, foc, papA, papC, and papEF; and (5) one of the 2 genes iutA and fyuA.
cThe number of isolates positive for a given subpathotype only.

https://doi.org/10.1371/journal.pone.0180599.t002
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the isolates’ relevant in vitro phenotypes. Since bladder and kidney cell lines were used for cell

association and persistence assays, only isolates tested in the UTI mouse model were character-

ized in these assays.

Ability to cause chicken airsacculitis

Using a chicken airsacculitis model, six chicken fecal E. coli isolates and positive controls

APEC-O2 and χ7122 were compared with negative control MG1655 for invasion of the inter-

nal organs of chickens after inoculation via the air sac (Table 5). Isolates classified as APEC

(MM149, MM218, and MM299), two of three APEC/UPEC (MM242 and MM243), and one

non-ExPEC (MM259) were selected. Some test isolates and both positive controls, but not the

Table 3. Prevalence of virulence-associated in vitro phenotypes among chicken fecal Escherichia coli isolates.

ExPECa No. of

isolates

Siderophore

production

Mean CASb zone

diameter (mm)

Colicin

production

Mean colicin zone

diameter (mm)

Biofilm

production

Complement

resistance

Growth in

urine

Yes 40 100% 18.4c 93% 18.5 100%c 48% 38%c

No 37 100% 14.4 92% 15.6 81% 24% 0%

aExtraintestinal pathogenic E. coli.
bChrome azurol S (zone diameter indicates extent of siderophore production).
cStatistically significant difference, ExPEC vs. non-ExPEC (P < 0.05) determined by a t-test for mean zone diameter of colicin and siderophore production,

and Fisher’s exact test (two tailed) for siderophore, colicin, and biofilm production, complement resistance, and growth in urine.

https://doi.org/10.1371/journal.pone.0180599.t003

Table 4. Characteristics of selected Escherichia coli isolates from chicken fecal samples used for in vivo experiments.

Isolate ExPEC

subpathotype or

non-ExPEC

Phylo-

group

Virulence genotype CR Urine

growth

Siderophore Colicin Biofilm Swim A498

cells

T24 cells

A P A P

MM149 APEC B2 astA, cvaC, fimH, fyuA, hlyF,

ibeA, iroN, iss, iutA, kpsM II,

malX, ompT, tsh, usp

+ - + + + NS NT NT NT NT

MM218 APEC A astA, fyuA, hlyF, hra, ire,

iroN, iss, iutA, K1, kpsM II,

tsh

- - + + + Sig- NT NT NT NT

MM225 Non-ExPEC A hlyF, iss, ompT, tsh - - + + + Sig- NT NT NT NT

MM242 APEC/UPEC A cvaC, fimH, hlyF, iss, iutA,

kpsM II, tsh, usp

+ + + + + Sig- Sig

+

NS Sig

+

NS

MM243 APEC/UPEC A cvaC, fimH, hlyF, iss, iutA,

kpsM II, tsh, usp

- + + + + Sig- NS NS NS NS

MM244 APEC/UPEC A cvaC, fimH, hlyF, iss, iutA,

kpsM II, tsh, usp

+ + + + + NS NS NS NS NS

MM248 Non-ExPEC B1 cvaC, fimH, hlyF, iroN, iss,

iutA, tsh, usp

- - + + - Sig+ Sig

+

NS Sig

+

Sig

+

MM259 Non-ExPEC B2 fimH, hlyF, tsh - - + + + Sig+ NS NS NS Sig

+

MM299 APEC D astA, fimH, hlyF, iroN, iss,

iutA, kpsM II, tsh

+ - + + + Sig+ NT NT NT NT

A, cell association assay; APEC, avian pathogenic E. coli; CR, complement resistance; ExPEC, extraintestinal pathogenic E. coli; P, cell persistence assay;

Phylo, phylogenetic group; NS, not significantly (P < 0.05) different compared to negative control MG1655; NT, not tested; Sig+, significantly (P < 0.05)

greater than negative control MG1655; Sig-, Significantly (P < 0.05) less than negative control MG1655; Swim, swimming motility; UPEC, uropathogenic E.

coli.

https://doi.org/10.1371/journal.pone.0180599.t004
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negative control, yielded positive cultures for multiple internal organs. Bacterial counts for

chicken fecal isolates exceeded those for negative control strain MG1655 in the spleen for iso-

lates MM149 and MM299, and in the air sac and heart for isolate MM218.

Ability to cause sepsis

Using a mouse sepsis model, three chicken fecal isolates classified as ExPEC (MM242,

MM243, and MM299) and three as non-ExPEC (MM225, MM248, and MM259) were ran-

domly selected, and along with positive control CFT073 were compared with negative control

MG1655 for illness severity score and survival (Fig 1). During the experiment, 29 of 40 mice

died from sepsis infection or were euthanized due to meeting endpoint criteria. Survival curves

(Fig 1) were significantly different from negative control strain MG1655 for positive control

strain CFT073 (P = 0.003) and fecal ExPEC isolates MM242 (P = 0.01), MM243 (P = 0.01), and

MM299 (P = 0.003), and non-ExPEC isolates MM248 (P = 0.003) and MM259 (P = 0.002). In

contrast, the non-ExPEC isolate MM225 was lethal in only one of five mice and the survival

curve was not significantly different (P = 0.3) from the negative control.

Ability to cause meningitis

Since no chicken fecal E. coli isolates were classified as NMEC based on molecular identifica-

tion of both K1 and ibeA, isolates that were positive for K1 or ibeA were selected to be tested in

the rat meningitis model. Chicken fecal isolates MM149 and MM218, which qualify as ExPEC

but differ for complement resistance, K1 capsule, and the NMEC-associated invasin gene ibeA
(Fig 2), were tested for their ability to cause meningitis in a neonatal rat model in comparison

with human NMEC isolate RS218 and negative control DH5α. MM218 was recovered from

the blood and cerebral spinal fluid at a similar level to NMEC isolate RS218, and at a signifi-

cantly higher level compared with negative control DH5α. In contrast, MM149 was recovered

Table 5. Ability of Escherichia coli isolates to cause systemic infection in chickens.

Strain Mean lesion

score

Air sac Blood Heart Liver Lung Spleen

Air

sac

Heart

and

liver

Pro-

portion

positive

Pro-

portion

positive

Mean

log10

CFU/ml

Pro-

portion

positive

Mean

log10

CFU/g

Pro-

portion

positive

Mean

log10

CFU/g

Pro-

portion

positive

Mean

log10

CFU/g

Pro-

portion

positive

Mean

log10

CFU/g

Controls

χ7122 2.1a 2.4a 8/10a 6/10 1.1 ± 1.2 9/10a 3.4 ± 1.6a 8/10a 1.9 ± 1.1a 7/10a 1.8 ± 1.3 9/10a 3.2 ± 1.3a

APEC-O2 1.0 1.6 3/8 1/8 0.6 ± 1.6 3/8 2.2 ± 3.2a 4/8 1.2 ± 1.4 4/10 1.8 ± 2.5 5/8a 2.1 ± 1.9a

MG1655 0.6 0.5 0/8 1/8 0.3 ± 0.7 0/8 0.0 ± 0.0 0/8 0.0 ± 0.0 0/8 0.0 ± 0.0 0/8 0.0 ± 0.0

Fecal isolates

MM149 0.6 1.4 3/10 2/10 0.8 ± 1.6 2/10 0.5 ± 1.1 2/10 0.8 ± 1.8 4/10 1.2 ± 1.6 5/10a 1.5 ± 1.8

MM218 1.0 1.9 4/7a 1/7 0.5 ± 1.2 4/7a 2.2 ± 2.3a 3/7 1.3 ± 1.8 3/7 1.7 ± 2.1 3/7 1.4 ± 1.9

MM242 0.0 0.4 3/8 0/8 0.0 ± 0.0 1/8 0.2 ± 0.5 1/8 0.2 ± 0.7 1/8 0.4 ± 1.2 1/8 0.4 ± 1.2

MM243 0.1 0.6 0/7 1/7 0.4 ± 1.0 1/7 0.3 ± 0.7 1/7 0.2 ± 0.6 1/7 0.4 ± 0.9 1/7 0.4 ± 1.1

MM259 0.3 0.1 1/8 1/8 0.6 ± 1.7 1/8 0.3 ± 0.7 1/8 0.4 ± 1.1 1/8 0.5 ± 1.4 2/8 0.7 ± 1.5

MM299 0.3 0.9 3/10 5/10 1.0 ± 1.3 1/10 0.3 ± 0.8 3/10 0.8 ± 1.3 4/10 1.4 ± 2.0 6/10a 1.8 ± 1.7

Concentration data is represented by mean values ± standard deviation. Counts were determined at 48 h post-inoculation
aSignificant difference (P < 0.05) compared with MG1655 (negative control) determined by a Fisher’s exact test (two tailed) for the proportion positive, or by

an ANOVA followed by Dunnett’s method for mean bacterial loads.

https://doi.org/10.1371/journal.pone.0180599.t005
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inconsistently from blood (< 102 CFU/ml) and not at all from CSF, and for neither endpoint

differed significantly from negative control DH5α (Fig 2).

Ability to cause urinary tract infection

In the mouse model of ascending UTI, bacterial loads were quantified in the bladder, kidney,

liver, and spleen of mice 48 h after inoculation of 108 CFU of the challenge strain into the blad-

der (Fig 3). Of the fecal E. coli isolates, three ExPEC isolates (MM242, MM243, and MM244)

that could grow in urine and two non-ExPEC (MM248 and MM259) that failed to grow were

selected. Some chicken fecal E. coli isolates equalled or exceeded one or both positive controls

for bacterial counts in the internal organs. Significantly greater bacterial loads than observed

with negative control MG1655 were observed in the bladder for both positive control strains

and for the non-ExPEC fecal isolate MM248; in the kidney for positive control strain CFT073

and for APEC/UPEC fecal isolates MM242 and MM243; in the liver for fecal isolates MM242,

MM243, and MM248; and in the spleen no significant differences were observed.

Fig 1. Ability of fecal Escherichia coli isolates to cause lethal sepsis in mice. A BALB/c mouse sepsis

model was used to evaluate the ability of E. coli isolates to cause lethal sepsis within 7 days of intraperitoneal

challenge with 108 CFU. Five mice were used per strain. (A) Severity scores, as recorded over the week using

a 5-point scoring scheme (1, healthy; 2, minimally ill; 3, moderately ill; 4, severely ill; 5, dead). (B) Survival rate

over 7 d. Human ExPEC isolate CFT073 was used as a positive control and E. coli K-12 MG1655 as a

negative control. An asterisk (*) represents a significantly (P < 0.05) different survival curve determined by

The Log-rank (Mantel-Cox) test for experimental isolates or positive control strain CFT073 compared with the

negative control MG1655.

https://doi.org/10.1371/journal.pone.0180599.g001

Virulence of chicken fecal E. coli isolates

PLOS ONE | https://doi.org/10.1371/journal.pone.0180599 July 3, 2017 10 / 18

https://doi.org/10.1371/journal.pone.0180599.g001
https://doi.org/10.1371/journal.pone.0180599


Discussion

The presence and characteristics of pathogenic E. coli colonizing healthy production chickens

could be important to both animal and human health. Here, we characterized E. coli isolates

from the feces of healthy production chickens both genotypically and phenotypically, includ-

ing for their ability to cause disease in animal models of chicken and human infections. Based

on the molecular criteria of Johnson et al. [37], 13% (40/304) of the present chicken fecal E.

coli isolates qualified as ExPEC. Varying isolation methods, classification methods, geographic

locations, and management practices likely contribute to differences in frequency of ExPEC

isolation between studies. In a previous study using methods different than that of the current

study, 10% of E. coli isolates from feces of commercial egg layer and meat chickens qualified

molecularly as ExPEC [38]. These findings indicate that commercial chickens can harbor E.

coli isolates with virulence characteristics of ExPEC that could be transmitted to other chickens

in the production house or contaminate carcasses during processing. Notably, one study

recovered E. coli from 87% (691/798) of post-chill chicken carcasses at large commercial har-

vest facilities [39]. Although concentrations decreased with subsequent processing steps, low

counts persisted, suggesting the possibility of contaminated retail poultry products, as docu-

mented in multiple retail market surveys [32, 40].

We analyzed for major E. coli phylogenetic groups to further characterize the virulence

potential of the present study isolates. As found previously for isolates from chicken meat and

Fig 2. Ability of fecal Escherichia coli isolates to cause meningitis in rats. E. coli MM149 and MM218

isolated from chicken feces, positive control neonatal meningitis strain RS218, and negative control strain

DH5αwere assessed for their abilities to induce septicemia and meningitis in 5 day-old Sprague-Dawley rats.

Isolates were characterized for extraintestinal pathogenic E. coli (ExPEC) status, K1 capsule, meningitis-

associated gene ibeA, and complement resistance. Rats were challenged intraperitoneally with 102 CFU and

assessed 18 h later for bacterial concentration in blood (triangles) and cerebral spinal fluid (CSF) (circles).

Each experimental group contained at least 10 rats. Each symbol represents an individual animal and the

vertical dashed line separates chicken fecal E. coli isolates from control strains. An asterisk (*) represents

significantly (P < 0.05) higher mean values determined by an ANOVA followed by Dunnett’s method for

experimental isolates or positive control strain RS218 compared with the negative control DH5α.

https://doi.org/10.1371/journal.pone.0180599.g002
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Fig 3. Ability of fecal Escherichia coli isolates to urinary tract infection. E. coli isolates MM242, MM243,

MM244, MM248, and MM259, positive controls CFT073 and UTI89, and negative control MG1655 were

assessed for their ability to colonize the (A) bladder and (B) kidney, and to invade in the (C) liver and (D)

spleen of CBA/J mice. Mice were challenged with 108 CFU via a urethral catheter and monitored for 2 days.

Each experimental group contained at least 9 mice. Each dot represents an individual animal; the vertical

Virulence of chicken fecal E. coli isolates

PLOS ONE | https://doi.org/10.1371/journal.pone.0180599 July 3, 2017 12 / 18

https://doi.org/10.1371/journal.pone.0180599


eggs [32], phylogroup distribution varied in relation to ExPEC status, with most ExPEC iso-

lates representing phylogroups A and D, and non-ExPEC isolates phylogroup B1. This is con-

sistent with the fact that APEC strains belong predominantly to phylogroups A and D,

whereas human-source ExPEC strains belong mainly to phylogroups B2 and D [13, 41, 42].

Genotypic tests that distinguish ExPEC from non-ExPEC isolates have been proposed [21,

37, 43–45], and have been used in previous studies to predict the zoonotic potential of animal-

source ExPEC isolates [10, 13, 21]. However, certain in vitro phenotypes (e.g., biofilm forma-

tion, colicin production, complement resistance) for which straightforward genetic screens are

unavailable also contribute to, or correspond with, the ability of E. coli to cause extraintestinal

infections. We showed previously a correlation between complement resistance and the ability

of APEC to invade the internal organs of experimentally challenged chickens [46]. Here, we

found that virulence-associated in vitro phenotypes were more prevalent among ExPEC iso-

lates than non-ExPEC isolates, and significantly so for biofilm formation and growth in urine.

Biofilm formation, which has been identified as important for UPEC colonization [47], pro-

vides bacteria with protection from detergents, antibiotics, and host defense elements [48].

Here, we detected biofilm formation for all ExPEC isolates. Analogous to the contribution of

biofilm to bacterial persistence in the genitourinary tract [49], biofilm formation may also

allow bacteria to persist on surfaces of poultry products such as raw meat and eggs, a suitable

topic for future study.

To survive in extraintestinal sites, bacteria must not only overcome harsh conditions but

also acquire nutrients, including micronutrients such as iron. Iron acquisition is critical in the

iron-limited environment of the urinary tract. Most E. coli produce the catecholate sidero-

phore enterobactin [50], possibly explaining why most of the present study isolates exhibited

siderophore production. However, the ExPEC isolates produced larger haloes in that assay

than did non-ExPEC isolates, suggesting that ExPEC produce more enterobactin and/or addi-

tional siderophores, e.g., aerobactin, salmochelin, and yersiniabactin [51, 52]. Whether sidero-

phore production also contributes to bacterial persistence and survival on raw poultry meat

and eggs warrants study.

Animal models of poultry and human infections were used to assess the ability of the study

isolates to cause ExPEC-associated infections. To our knowledge, this is the first study to test

E. coli from the feces of healthy production chickens in four ExPEC disease models, including

avian colibacillosis, sepsis, meningitis, and UTI. In the avian colibacillosis model, chicken-

source E. coli isolates were recovered from multiple internal organs, supporting that initially

uncolonized chickens in production houses could acquire potentially invasive E. coli that are

shed by colonized birds. Our findings confirm those of a previous study in which E. coli iso-

lates from chicken feces and the poultry house environment invaded the internal organs of

challenged chickens [7].

In previous studies of poultry-source E. coli in rodent models of ExPEC-associated human

infections, Johnson et al. found that an APEC turkey lung isolate lacked full virulence in a

mouse sepsis model and failed to cause bacteremia or meningitis in a rat meningitis model

[53], whereas Tivendale et al. found that some avian colibacillosis isolates caused bacteremia

and meningitis in the rat meningitis model [54]. Production chickens with colibacillosis may

die because of infection or have their carcasses condemned when the lesions are identified dur-

ing processing [3], which could reduce the risk of transfer of APEC strains from infected

dashed line separates chicken fecal E. coli isolates from control strains. An asterisk (*) represents

significantly higher mean values determined by an ANOVA followed by Dunnett’s method for fecal E. coli

isolates and positive control strains compared with the negative control.

https://doi.org/10.1371/journal.pone.0180599.g003
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chickens to meat products during processing. However, if ExPEC are harbored in chicken

feces, they may pose a less apparent but nonetheless real risk to food safety. To our knowledge,

the present study is the first to show that a fecal E. coli isolate (MM218) from a healthy produc-

tion chicken can cause bacteremia and meningitis in a rat meningitis model. The same isolate

invaded internal organs of chickens demonstrating the potential of E. coli from chickens to

cause disease in both poultry and humans. In addition, some of the studied fecal isolates

caused lethal sepsis in� 20 h, similar to human ExPEC strain CFT073. Fecal isolate MM299

caused lethal sepsis� 20 h and invaded in the spleen of challenged chickens at significant lev-

els, further demonstrating the potential of E. coli from chickens to cause disease in both poultry

and humans. These findings have potentially important implications for food safety, since they

suggest that chickens without colibacillosis could, via fecal contamination at harvest, transfer

to poultry meat E. coli isolates with the ability to cause human meningitis and sepsis.

In the United States, UTI-related healthcare costs exceed $1 billion per year [6], and food-

producing animals have been identified as a potential source of human ExPEC infection [11].

We found that 19% (15/77) of the tested chicken fecal E. coli isolates had the potential to cause

UTI, based on their in vitro growth in urine, and that these isolates were mostly ExPEC per

molecular criteria. These findings support a previous study that identified 23% of ExPEC iso-

lates from raw chicken meat as UPEC [32]. We found that some chicken-source isolates could

cause UTI in a mouse model, and with similar intensity as observed for positive control strains

from humans with cystitis and pyelonephritis. This confirms in a very different geographical

region the findings of previous studies that E. coli isolates from the feces of healthy Danish

broiler chickens were virulent in the UTI mouse model [41, 55]. To further implicate bacterial

isolates from chickens as a cause of disease in humans, another study [56] demonstrated nearly

identical pulsed-field gel electrophoresis profiles between isolates from chickens and humans.

However, additional studies are needed to establish that ExPEC are transferred from animals

to humans via contaminated meat and to define the frequency of such transfer.

Some fecal isolates that caused diseases in animal models tested were classified as non-

ExPEC by the ExPEC-genotypic and phenotypic associated criteria. Future characterization

such as genomic and high-throughput sequencing of these isolates could elucidate their mech-

anisms of virulence and improve ExPEC detection criteria.

Conclusions

Our study provides an in-depth assessment of virulence-related genotypes and phenotypes,

including in vivo virulence, of fecal ExPEC isolates from healthy production chickens. Multiple

methods were used to identify isolates with presumptive zoonotic potential. Some isolates

were able to cause one or several diseases in animal models of septicemia, meningitis, UTI,

and avian colibacillosis. Thus, this study provides the strongest evidence to date that chicken

feces could be a source of virulent ExPEC that are able to infect humans and poultry. Interven-

tions that reduce these pathogens in the chicken intestine and on carcasses and meat products

could help to reduce transmission via poultry products and thus prevent clinical ExPEC infec-

tions and humans.
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